gomory_hu_tree#
- gomory_hu_tree(G, capacity='capacity', flow_func=None)[来源]#
返回无向图 G 的 Gomory-Hu 树。
带容量的无向图的 Gomory-Hu 树是一棵带权树,它表示图中所有 s-t 对的最小 s-t 割。
它只需要
n-1
次最小割计算,而不是显而易见的n(n-1)/2
次。该树表示所有 s-t 割,因为任意一对节点之间的最小割值是 Gomory-Hu 树中两节点之间最短路径上的最小边权。Gomory-Hu 树还有一个属性,即移除任意两个节点之间最短路径上权值最小的边后,会留下两个连通分量,它们构成了 G 中节点的一个划分,该划分定义了最小 s-t 割。
详细信息请参见下面的示例部分。
- 参数:
- GNetworkX 图
无向图
- capacity字符串
图 G 的边应具有一个表示边可以支持多少流的 capacity 属性。如果不存在此属性,则认为该边具有无限容量。默认值: 'capacity'。
- flow_func函数
执行底层流计算的函数。默认值
edmonds_karp()
。此函数在具有右偏度分布的稀疏图上性能更好。shortest_augmenting_path()
在密集图上性能会更好。
- 返回:
- TreeNetworkX 图
表示输入图的 Gomory-Hu 树的 NetworkX 图。
- 引发:
- NetworkXNotImplemented
如果输入图是有向图则引发。
- NetworkXError
如果输入图是空图则引发。
注意
此实现基于 Gusfield 计算 Gomory-Hu 树的方法 [1],该方法不需要节点收缩,并且与原始方法具有相同的计算复杂度。
参考文献
[1]Gusfield D: Very simple methods for all pairs network flow analysis. SIAM J Comput 19(1):143-155, 1990.
示例
>>> G = nx.karate_club_graph() >>> nx.set_edge_attributes(G, 1, "capacity") >>> T = nx.gomory_hu_tree(G) >>> # The value of the minimum cut between any pair ... # of nodes in G is the minimum edge weight in the ... # shortest path between the two nodes in the ... # Gomory-Hu tree. ... def minimum_edge_weight_in_shortest_path(T, u, v): ... path = nx.shortest_path(T, u, v, weight="weight") ... return min((T[u][v]["weight"], (u, v)) for (u, v) in zip(path, path[1:])) >>> u, v = 0, 33 >>> cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) >>> cut_value 10 >>> nx.minimum_cut_value(G, u, v) 10 >>> # The Gomory-Hu tree also has the property that removing the ... # edge with the minimum weight in the shortest path between ... # any two nodes leaves two connected components that form ... # a partition of the nodes in G that defines the minimum s-t ... # cut. ... cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) >>> T.remove_edge(*edge) >>> U, V = list(nx.connected_components(T)) >>> # Thus U and V form a partition that defines a minimum cut ... # between u and v in G. You can compute the edge cut set, ... # that is, the set of edges that if removed from G will ... # disconnect u from v in G, with this information: ... cutset = set() >>> for x, nbrs in ((n, G[n]) for n in U): ... cutset.update((x, y) for y in nbrs if y in V) >>> # Because we have set the capacities of all edges to 1 ... # the cutset contains ten edges ... len(cutset) 10 >>> # You can use any maximum flow algorithm for the underlying ... # flow computations using the argument flow_func ... from networkx.algorithms import flow >>> T = nx.gomory_hu_tree(G, flow_func=flow.boykov_kolmogorov) >>> cut_value, edge = minimum_edge_weight_in_shortest_path(T, u, v) >>> cut_value 10 >>> nx.minimum_cut_value(G, u, v, flow_func=flow.boykov_kolmogorov) 10