girvan_newman#
- girvan_newman(G, most_valuable_edge=None)[源]#
使用 Girvan–Newman 方法在图中查找社区。
- 参数:
- GNetworkX 图
- most_valuable_edge函数
接受图作为输入并输出一条边的函数。算法每次迭代时,都会重新计算并移除此函数返回的边。
如果未指定,将使用具有最高
networkx.edge_betweenness_centrality()
的边。
- 返回:
- 迭代器
一个迭代器,遍历
G
中节点集合的元组。每个节点集合是一个社区,每个元组是算法在特定级别的社区序列。
说明
Girvan–Newman 算法通过逐步移除原始图中的边来检测社区。该算法在每一步移除“最有价值”的边,传统上是指具有最高边介数中心性的边。随着图分解成多个部分,紧密连接的社区结构得以显现,结果可以绘制成树状图。
示例
获取第一对社区
>>> G = nx.path_graph(10) >>> comp = nx.community.girvan_newman(G) >>> tuple(sorted(c) for c in next(comp)) ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
要仅获取前 k 个社区元组,请使用
itertools.islice()
>>> import itertools >>> G = nx.path_graph(8) >>> k = 2 >>> comp = nx.community.girvan_newman(G) >>> for communities in itertools.islice(comp, k): ... print(tuple(sorted(c) for c in communities)) ... ([0, 1, 2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5, 6, 7])
要当社区数量大于 k 时停止获取社区元组,请使用
itertools.takewhile()
>>> import itertools >>> G = nx.path_graph(8) >>> k = 4 >>> comp = nx.community.girvan_newman(G) >>> limited = itertools.takewhile(lambda c: len(c) <= k, comp) >>> for communities in limited: ... print(tuple(sorted(c) for c in communities)) ... ([0, 1, 2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5, 6, 7]) ([0, 1], [2, 3], [4, 5], [6, 7])
仅根据权重选择要移除的边
>>> from operator import itemgetter >>> G = nx.path_graph(10) >>> edges = G.edges() >>> nx.set_edge_attributes(G, {(u, v): v for u, v in edges}, "weight") >>> def heaviest(G): ... u, v, w = max(G.edges(data="weight"), key=itemgetter(2)) ... return (u, v) ... >>> comp = nx.community.girvan_newman(G, most_valuable_edge=heaviest) >>> tuple(sorted(c) for c in next(comp)) ([0, 1, 2, 3, 4, 5, 6, 7, 8], [9])
在选择具有最高边介数中心性(例如)的边时,利用边的权重
>>> from networkx import edge_betweenness_centrality as betweenness >>> def most_central_edge(G): ... centrality = betweenness(G, weight="weight") ... return max(centrality, key=centrality.get) ... >>> G = nx.path_graph(10) >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge) >>> tuple(sorted(c) for c in next(comp)) ([0, 1, 2, 3, 4], [5, 6, 7, 8, 9])
要为边指定不同的排名算法,请使用
most_valuable_edge
关键字参数>>> from networkx import edge_betweenness_centrality >>> from random import random >>> def most_central_edge(G): ... centrality = edge_betweenness_centrality(G) ... max_cent = max(centrality.values()) ... # Scale the centrality values so they are between 0 and 1, ... # and add some random noise. ... centrality = {e: c / max_cent for e, c in centrality.items()} ... # Add some random noise. ... centrality = {e: c + random() for e, c in centrality.items()} ... return max(centrality, key=centrality.get) ... >>> G = nx.path_graph(10) >>> comp = nx.community.girvan_newman(G, most_valuable_edge=most_central_edge)